Accelerating a single N-body simulation with 8 particles using AVX512 instructions

Hanno Rein, Pejvak Javaheri, Dan Tamaýo

Newton (1687)

$$
\ddot{\mathbf{r}}_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{3}}
$$

N-body simulations of planetary systems

- Calculate orbits of planets, asteroids, and comets in the Solar System
- Find out if a planetary system is stable
- Hard to do for the Solar System
- Even harder for exoplanetary systems

Why is it hard?

- Solving this ODE is inherently sequential
- Discretize time into timesteps
- One timestep after another
- Timestep needs to be smaller than smallest timescale in the problem
- Innermost orbital period
- 88 days for Solar System
- 1 day for exoplanets
- Might need 10^{13} timesteps!

$$
\ddot{\mathbf{r}}_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{3}}
$$

N-body integrations of the Solar System

N-body integrations of the Solar System

Why is it hard?

$$
\ddot{\mathbf{r}}_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{3}}
$$

N-body integrations of the Solar System

N-body integrations of the Solar System

Wisdom Holman Integrator

- Wisdom (1981), Wisdom \& Holman (1991)
- Symplectic 2nd order integrator
- Many extensions to higher order
- Work for any gravitational system with a dominant central object

Splitting

One Wisdom-Holman timestep

- Evolve all particles for half a timestep assuming they are on Keplerian orbits
- Calculate gravitational acceleration from planet-planet interactions, update velocity assuming a full timestep

- Evolve all particles for half a timestep assuming they are on Keplerian orbits

Small perturbations

AVX512

- Single Instruction Multiple Data (SIMD)
- Available on high-end Intel and AMD CPUs
- Operates on 512 bit wide registers
- Can operate on 8 double precision floating point numbers at the same time

- Compiler can automatically produce SIMD instruction
- Or do it manually, using intrinsics / assembler

AVX512 Example: vaddpd

AVX512 Example: vshufpd

$\underbrace{\underbrace{}_{2}}_{\underbrace{a_{0}}_{\text {128-bit lane }}} a_{1}$

Interaction step

$$
\mathbf{a}_{i}=-\sum_{j=1, j \neq i}^{N} \frac{G m_{j}}{Q_{i j}^{3}} \mathbf{Q}_{i j}
$$

- Expensive parts: division and square root
- Can use symmetry of Newton's 3rd law
- How to arrange the calculations for optimal performance?

Interaction step in 4 parts

Kepler step

$$
H_{K, i}=\frac{P_{i}^{2}}{2 m_{i}}-\frac{G m_{0} m_{i}}{Q_{i}}
$$

- Iterative solution for Kepler's equation
- Fixed number of iterations using both Halley's method and Newton's method
- Instead of sin/cos, use Stumpff and Stiefel functions

Solving Kepler's Equation in 4 iterations

Halley's method
Halley's method
Newton's method
Newton's method

4 terms in Stumpff function
4 terms in Stumpff function
6 terms in Stumpff function
6 terms in Stumpff function

Kepler solver achieves machine precision

Long term integrations

Conclusions

- WHFast512 is by far the fastest N -body integrator in the world for planetary systems
- $5 \mathrm{x}-10 \mathrm{x}$ faster
- Works for planetary systems with up to 8 planets
- Need a CPU which supports AVX512 instructions

Try it out! https://github.com/hannorein/rebound
Pejvak Javaheri, Hanno Rein, Dan Tamayo
The Open Journal of Astrophysics, Vol. 6, 2023, July 2023

