## Classical Mechanics, PHYB54 Problem Set 5

## Professor Hanno Rein

Due: Monday, March 6th 2017, 4pm

**Note:** For this assignment, you must hand in your answers as well as a printout of your source code and the plots you made. Make sure the plots have labels on the axes and a high enough sampling rate to produce smooth results. This assignment counts twice as much as each of the first four assignments.

## Problem 5.1

Your task is to write a computer program to integrate the differential equation of a forced damped harmonic oscillator. The equation of motion is a second order differential equation:

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f$$

Will will assume a forcing of the form

$$f(t) = f_0 \sin(\omega t).$$

Most numerical integration packages cannot solve second order differential equations. Therefore, rewrite the second order differential equation as two coupled first order differential equations in the variables x and v, i.e.:

$$\begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} x \\ v \end{pmatrix}^{\cdot} = \dots$$

The right hand side should only contain the variables x and v, i.e. not  $\dot{x}$ .

## Problem 5.2

Write a computer program to integrate the two first-order differential equations from 5.1. You may use a package such as **numpy** or **scipy** to integrate the coupled differential equations. However, you have to implement the function that calculates the derivate yourself. Test your program with the following parameters:

$$\beta = 0.1$$
  $\omega_0 = 1$   $f_0 = 2.3$   $\omega = 1.7$ 

and the following initial conditions:

$$t_0 = 0$$
  $x(t_0) = 0$   $v(t_0) = 0$ 

After a few oscillation periods, you should see a stable oscillation with an amplitude of  $\sim 1.25$ .

- (a) Plot both the position and velocity as a function of time in the interval from t = 0 to t = 50.
- (b) Create the same plot again, but change  $x(t_0) = 9$ . Describe qualitatively which aspects of the solution change and which aspects stay the same.
- (c) Create the same plot again. This time use  $x(t_0) = 0$  and w = 1. Describe qualitatively which aspects of the solution change and why.